
Package: spaero (via r-universe)
November 1, 2024

Title Software for Project AERO

Version 0.6.0

Description Implements methods for anticipating the emergence and
eradication of infectious diseases from surveillance time
series. Also provides support for computational experiments
testing the performance of such methods.

Depends R (>= 3.2.1)

Imports stats, utils

License GPL (>= 2) | file LICENSE

LazyData true

Suggests covr (>= 3.0.0), earlywarnings (>= 1.0.59), knitr (>= 1.11),
moments (>= 0.14), np (>= 0.60.2), pomp (>= 2.1), rmarkdown (>=
0.9.2), testthat (>= 0.11.0)

BugReports https://github.com/e3bo/spaero/issues/

RoxygenNote 7.1.1

VignetteBuilder knitr

Encoding UTF-8

Repository https://e3bo.r-universe.dev

RemoteUrl https://github.com/e3bo/spaero

RemoteRef HEAD

RemoteSha 37099fab35d0399363164c21bc217fbd1080204a

Contents
create_simulator . 2
get_stats . 3

Index 6

1

https://github.com/e3bo/spaero/issues/

2 create_simulator

create_simulator Create surveillance data simulator.

Description

create_simulator creates a pomp object that will run simulations of an SIR or SIS model accord-
ing to Gillespie’s direct method and generate simulated observations of the process.

Usage

create_simulator(
times = seq(0, 9),
t0 = min(times),
process_model = c("SIR", "SIS"),
transmission = c("density-dependent", "frequency-dependent"),
params = c(gamma = 24, mu = 1/70, d = 1/70, eta = 1e-05, beta_par = 1e-04, rho = 0.1,

S_0 = 1, I_0 = 0, R_0 = 0, N_0 = 1e+05, p = 0),
covar = data.frame(gamma_t = c(0, 0), mu_t = c(0, 0), d_t = c(0, 0), eta_t = c(0, 0),

beta_par_t = c(0, 0), p_t = c(0, 0), time = c(0, 1e+06))
)

Arguments

times A numeric vector of increasing times at which the state of the simulation will be
sampled.

t0 The time at which the simulation is started with state variable set to the initial
conditions specified via params.

process_model Character string giving the process model. Allowed values are ’"SIR"’ and
’"SIS"’.

transmission Character string describing the transmission model. Allowed values are ’"density-
dependent"’ and ’"frequency-dependent"’.

params A named numeric vector of parameter values and initial conditions.

covar A data frame containing values of the time-dependent components of the param-
eters.

Details

See the vignette "Getting Started with spaero" for a description of the model. The "params" ar-
gument must include all model parameters. These will become the default parameters for the
model object. They can be overridden when the simulation is run via the "params" argument of
pomp::simulate. The case is the same for the "times" argument. The "covar" argument should
be a data frame with a column named for each of the time-dependent parameters and a column
named time. This data frame describes the time series of each of the time-dependent parameters. In
the simulation, interpolation based on this data frame determines the value of these parameters at
specific instants in time. The user must ensure that these values result in the parameters remaining
non-negative for the course of the simulation.

get_stats 3

Value

A pomp object with which simulations can be run via pomp::simulate.

See Also

pomp for documentation of pomp objects

Examples

if (requireNamespace("pomp", quietly = TRUE)) {
foo <- create_simulator()
out <- pomp::simulate(foo, times = seq(0, 20, by = 1/26))
out <- as(out, "data.frame")
head(out)

opar <- par(mfrow = c(2, 1))
plot((S/N)~time, data = out, type = "l")
plot(cases~time, data = out, type = "l")
par(opar)

}

get_stats Get estimates of time-dependent properties of models.

Description

get_stats estimates time-dependent properties of models (e.g., variance) from ensemble time se-
ries.

Usage

get_stats(
x,
center_trend = "grand_mean",
center_kernel = c("gaussian", "uniform"),
center_bandwidth = NULL,
stat_trend = c("local_constant", "local_linear"),
stat_kernel = c("uniform", "gaussian"),
stat_bandwidth = NULL,
lag = 1,
backward_only = FALSE

)

4 get_stats

Arguments

x A univariate or multivariate numeric time series object or a numeric vector or
matrix.

center_trend Character string giving method of calculating the trend to subtract. Allowed val-
ues are ’"assume_zero"’, ’"grand_mean"’, ’"ensemble_means"’, ’"local_constant"’,
and ’"local_linear"’. Will be partially matched.

center_kernel Character string giving the kernel for any local detrending. Allowed values are
’"gaussian"’ and ’"uniform"’.

center_bandwidth

Bandwidth of kernel for any local detrending done. A numeric value >= 1.

stat_trend Character string giving method of smoothing estimates. Allowed values are
’"local_constant"’, and ’"local_linear"’. Will be partially matched.

stat_kernel Character string giving the kernel for local smoothing of estimates. Allowed
values are ’"gaussian"’ and ’"uniform"’.

stat_bandwidth Bandwidth of kernel for local smoothing of estimates. A numeric value >= 1.

lag Integer lag at which to calculate the acf. This lag is in terms of the index of x
and does not account for the frequency of x if x is a time series. It should be
non-negative.

backward_only Logical value (defaulting to ’FALSE’) that determines whether any uniform
smoothing kernels are restricted to using data before the index of the smoothed
estimate.

Details

Any missing values in ’x’ will cause an error.

Bandwidths affect weights in local smoothers as follows. To get the local estimate corresponding to
index i, the distance to each other index j is calculated as (i - j) / h, where h is the bandwidth. Then
that distance is plugged into the kernel function to obtain a weight. The weights are normalized to
sum to one for each index.

The gaussian kernel is equivalent to a standard Gaussian density function. The uniform kernel is
an indicator function of whether the distance is less than 1. Thus selecting a uniform kernel with
a bandwidth of 2 is equivalent to a sliding window of length 3 that is centered on the focal index.
In general, if n is the greatest integer that is less than the value of the bandwidth h, the window
includes the n nearest values on each side of the focal index.

’"local_constant"’ smoothers are local means computed with the kernel weights. ’"local_linear"’
smoothers are the fitted values of local linear regressions with the kernel weights. The linear
smoothers avoid biases that the one-sided kernels at the ends of the time series can create for the
local constant smoothers.

See the vignette "Getting Started with spaero" for the formulas used for each estimate.

Value

A list with elements ’"stats"’, ’"taus"’, ’"centered"’, ’"stat_trend"’, ’"stat_kernel"’, ’"stat_bandwidth"’,
and ’"lag"’. "stats" is a list containing vectors of the estimates. ’"taus"’ is a list containing Kendall’s
correlation coefficient of each element of ’"stats"’ with time. ’"centered"’ is a list of the detrended

get_stats 5

time series, the trend subtracted, and the bandwidth used in the detrending. The other elements
record the parameters provided to this function for future reference.

See Also

acf, var, kurtosis, and skewness for estimation of properties that are not time-dependent. See
generic_ews for another approach to estimation of time-dependent properties.

Examples

A highly autocorrelated time series
x <- 1:10
get_stats(x, stat_bandwidth = 3)$stats

Plot log of acf
plot(log(get_stats(x, stat_bandwidth = 3)$stats$autocor))

Check estimates with AR1 simulations with lag-1 core 0.1
w <- rnorm(1000)
xnext <- function(xlast, w) 0.1 * xlast + w
x <- Reduce(xnext, x = w, init = 0, accumulate = TRUE)
acf(x, lag.max = 1, plot = FALSE)
head(get_stats(x, stat_bandwidth = length(x))$stats$autocor)

Check detrending ability
x2 <- x + seq(1, 10, len = length(x))
ans <- get_stats(x2, center_trend = "local_linear",

center_bandwidth = length(x),
stat_bandwidth = length(x))$stats

head(ans$autocor)

The simple acf estimate is inflated by the trend
acf(x2, lag.max = 1, plot = FALSE)

Check ability to estimate time-dependent autocorrelation
xnext <- function(xlast, w) 0.8 * xlast + w
xhi <- Reduce(xnext, x = w, init = 0, accumulate = TRUE)
acf(xhi, lag.max = 1, plot = FALSE)
wt <- seq(0, 1, len = length(x))
xdynamic <- wt * xhi + (1 - wt) * x
get_stats(xdynamic, stat_bandwidth = 100)$stats$autocor

Index

acf, 5

create_simulator, 2

generic_ews, 5
get_stats, 3

kurtosis, 5

pomp, 3

skewness, 5

var, 5

6

	create_simulator
	get_stats
	Index

